
thermochimica 
acts 

Thermochimica Acts 304/305 (1997) 3549 ELSEVIER 

Abstract 

Ultrasonic relaxation and complex heat capacity 

Ingo Alig 

Deutsches Kunststoff-Institut, SchloJTgartenstraJ3e 6, 0-64289 Darmstadt, Germany 

Received 11 September 1996; accepted 4 April 1997 

The similar origin of the sound absorption due to thermal relaxation processes in ultrasonic experiments and the frequency- 
dependent complex heat capacity measured by temperature-modulated calorimetrie (TMC) experiments is reviewed. 
Furthermore, the similarities and limitations of the two experimental methods for investigations of the glass relaxation and the 
relaxation of composition fluctuations near a second-order critical point are discussed. The theories for the ultrasonic 
attenuation near a second-order phase transition, which include the description of the complex frequency-dependent heat 
capacity, are referred to and illustrated with some examples. It has been shown that, for those relaxation processes the 
ultrasonic spectroscopy can be considered as a high-frequency extension of the TMC. 0 1997 Elsevier Science B.V. 
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1. Introduction 

With the application of temperature modulation to a 
differential scanning calorimeter (DSC) by Reading et 
al. [ 141 a considerable progress in classica1 thermal 
analysis has been triggered. As Wunderlich et al. [5] 
noticed recently, this may wel1 be called the greatest 
advance in scanning calorimetry since its inception 
thirty-five years ago. Parallel to the development of 
modulated differential scanning calorimeters (MDSC) 
a discussion about the physical meaning of the addi- 
tional information provided by this technique started. 
This discussion was mainly stimulated by Schawe 
[6-81 who interpreted the temperature-modulated 
DSC (TMDSC) measurements in terms of a complex 
heat capacity. 

Some years before the development of the TMDSC 
equipment, Nagel et al. [9,10] introduced specific-heat 
spectroscopy using periodic electrical heating of the 

sample and the analysis of the first and the third 
harmonie responses for calculation of the fre- 
quency-dependent heat capacity. 

The fact that Nagel et al. compared the relaxation 
times estimated from their specific-heat spectroscopy 
to ultrasonic relaxation data is, from a physical point 
of view, very reasonable, as shown below, but may 
have been rather arbitrary in this paper [ 111. 

A careful analysis of the literature by Gmelin [ 121 
shows that modulated sample heating using different 
forms of energy (resistive or inductive, Joule heating, 
light, electron bombardment, etc.) is common in 
calorimetry since 1911 [ 131. Therefore, we can con- 
sider the temperature-modulated calorimetry (TMC) 
as a rather classica1 method. At this point, one may 
recall that the thermal waves were already investigated 
by Fourier [ 141 at the beginning of the last century and 
have been applied by Angström [ 151 for measure- 
ments of thermal conductivity. The so-called thermal 
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wave imaging, which is based on temperature mod- 
ulations on the surface of a sample and the differences 
in the thermal diffusion length (a combination of 
thermal conductivity, heat capacity and density) at 
different positions of a material, is applied for non- 
destructive evaluation [16] of large objects or for 
microscopic imaging (see, e.g. [17]). Similar to the 
complex heat-capacity measurements discussed here, 
both, phase and amplitude, can be used for the 
imaging. 

If one is interested in a better molecular description 
of the frequency-dependent heat capacity, one wil1 
find that many of the ideas have been developed in 
order to understand the attenuation of sound. As early 
as 18 16, Laplace [ 181 demonstrated that the velocity 
of sound is associated with adiabatic rather than 
isothermal compressibility. Therefore, during propa- 
gation of a sound wave, the oscillation of acoustic 
pressure is coupled with adiabatic temperature oscil- 
lations. The latter is very similar to a temperature- 
modulated calorimetrie experiment. Hence, adiabatic 
temperature oscillations are of importante for the 
understanding of sound attenuation, as shown in 
1928 by Herzfeld and Rite [ 191 for polyatomic gases. 
They noted that the transfer of energy from extemal 
degrees of freedom (i.e. the translational degrees of 
freedom of gases) to the internal degrees of freedom 
(i.e. the vibrational modes of oscillation and rotational 
modes in polyatomic gases) is characterised by one or 
a series of characteristic relaxation times Ti. In the case 
of sound frequency w (angular frequency - w = 27rf), 
which is identical to the frequency of the temperature 
modulation, being less than the inverse of the relaxa- 
tion time Ti, the intemal and external degrees of 
freedom are in equilibrium. If, on the other hand, w 
is much faster than the inverse of Ti, the intemal 
degrees of freedom cannot follow the extemal ones. 
For w equal to l/~i, the intemal modes show a 
maximum phase shift compared to extemal ones, 
i.e. to the extemal temperature. The resulting disper- 
sion can then be described by a complex frequency- 
dependent heat capacity. For a description of sound 
propagation, the complex frequency-dependent heat 
capacity can be connected to a complex compressi- 
bility and, furthermore, to a complex sound velocity 
[20]. It can be shown that sound attenuation is related 
to the imaginary part of the complex heat capacity and 
reflects the frequency dependence of energy transfer 

between intemal and extemal degrees of freedom. A 
first theory for the anomalous absorption of sound near 
a second-order phase transition was developed by 
Landau and Khalatnikov [21] according to the form- 
alism for the relaxation phenomena developed by 
Mandelstam and Leontovich [22]. They [21] showed 
that the amplitude of the sound absorption can be 
expressed by the specific heat at a second-order phase 
transition. Later, Fixman [23] and Mistura [24] 
applied the Herzfeld-Rite idea to second-order phase 
transitions. These theories for longitudinal ultrasonic 
attenuation include the expressions for a complex 
frequency-dependent heat capacity near a critical 
point. In 1985, Ferrell and Bhattacharjee [25] 
extended the Herzfeld-Rite-Fixman-Mistura 
approach by adding the idea of dynamica1 staling. 
This theory proved to be rather successful for the 
description of ultrasonic attenuation data near a 
second-order phase transition, as shown by several 
ultrasonic investigations (see e.g. Refs. [26-291 and 
references therein). 

The aim of this paper is to review some of the 
theories for the frequency-dependent heat capacity 
which have been developed for a description of sound 
attenuation. The relationship between the complex 
frequency-dependent heat capacity measured by 
calorimetrie and ultrasonic experiments may stimulate 
the ongoing discussion on temperature-modulated 
calorimetry. It wil1 be shown that ultrasonic experi- 
ments, in some sense, may be considered as a high- 
frequency extension of the TMC. The forma1 simila- 
rities between TMC and other relaxation techniques 
are discussed. 

2. Complex heat capacity 

2.1. Energy transfer from extemal to intemal 
degrees of freedom 

Relaxation phenomena (for details, see Ref. [20]) 
are usually described by linear differential equations, 
in which only the first and the zeroth differential 
quotients are taken into account. For example, in 
contrast to the second-order linear differential equa- 
tion for mechanica1 resonance phenomena, in the 
differential equation for a relaxation the inertial force 
is neglected and only the frictional and the restoring 
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forces are considered. In the case of an extemal field, 
the resulting additional force has also to be taken in 
consideration. 

Mandelstam and Leontovich [22], and most exten- 
sively Meixner [30], have shown that this type of 
differential equation can be derived for relaxation 
phenomena in a very genera1 formalism, which does 
not specify the molecular mechanisms in detail. For 
the dependent variable an order parameter is used in 
this approach, which is defined with respect to the 
‘driving force’ of the process. 

As early as in 1928, Herzfeld and Rite [ 191 assumed 
that, for the explanation of the sound attenuation in 
polyatomic gases, the transfer of energy from extemal 
degrees of freedom to the intemal degrees of freedom 
can be expressed by a typical relaxation equation 
containing a characteristic relaxation time r for the 
energy exchange between extemal and intemal 
degrees of freedom: 

(1) 

where Ei is the momentary value of the intemal energy 
and E’(r) the value it would have in equilibrium with 
the extemal degrees of freedom. The latter are repre- 
sented by the temperature T. 

When assuming that the heat capacity .Ci is 
independent of the temperature or that the deviations 
of the temperature from a value Tc are small, one can 
write 

Ei - ,$, = C’(T’ - To), (2) 

with c’ being the heat capacity due to the intemal 
degrees of freedom, which are represented by a tem- 
perature Ti. The assumption of a temperature-inde- 
pendent heat capacity is quite strong since temperature 
changes in a sample are connected mostly to changes 
in the intemal degrees of freedom and, therefore, to 
changes in the heat capacity. This limits the amplitude 
of the temperature modulations in the experiments to 
very smal1 values. In particular, it may become very 
difficult to fulfill this assumption close to phase 
transition. A similar problem can arise from applying 
the temperature-modulation technique to irreversible 
processes or those controlled by slow diffusion (i.e. 
crystallisation in polymers). However, with the 
assumption of a temperature-independent heat capa- 

city Eqs. (2) and (3) can rewritten as: 

-z=i(Ti -Te). 

Different temperature changes (temperature steps, 
harmonie excitation, etc.) can now be applied to 
systems for which intemal and extemal degrees of 
freedom are defined [20]. 

2.2. Step function 

A typical time-domain relaxation experiment 
involves the excitation of the sample by a step function 
and recording the response. In our case, it is possible to 
raise, or decrease, the extemal temperature at t = 0 
from T. to a value of Tl. Two cases may be discussed 
now: (i) the extemal temperature is kept constant at T, 
after t = to and the energy, which is transferred to the 
intemal degrees of freedom, replaced from the thermal 
bath; and (ii) the extemal temperature is not constant 
but lowered by the amount of energy transferred into 
the intemal degrees of freedom. 

In the first case, the extemal rise in temperature is 
defined by the step function 

Te(t) = 
To t < to 
Tl t>to. (4) 

The solution of Eq. (4) is then given by 

T’(t) = TI + (To - TI) exp (-(t - to)/T) (5) 

This situation is shown schematically in Fig. 1. 

TO 

I 

Te(t) 

t0 
t 

Fig. 1. Response of intemal temperature (intemal degrees of 
freedom) after a temperature step from T, to TI at t = to (the 
extemal temperature is kept constant at TI for t > to). 
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In case of the external temperature not being 
constant but depending on the amount of energy 
flowing into internal degrees of freedom (with no 
energy transfer from the thermal bath to the external 
degrees of freedom after the temperature step), one 
can obtain for a rise in the extemal temperature 
from í”a to a value Tl at t = to (see Ref. [20]) the 
following: 

T’(t) = T2 + (To - T2) exp{-(t - to)/#}, 

(6) 

c - c’ 
7’=-j- 

c ’ (7) 

where, in contrast to Eq. (4), Te is not constant for 
t > to (Te + T2 as t + cc ). From Eq. (7), it can be 
seen that the characteristic relaxation time depends on 
the circumstances of the experiments. 

2.3. Harmonie excitation 

The typical relaxation experiment to get directly the 
response function in the frequency domain is a har- 
monic excitation of the system with different frequen- 
cies. For a periodic variation of temperature with time 
around To, one can write 

ST(t) E 6Te = Te - T. 0: eiW’. (8) 

The temperature response of the intemal degrees of 
freedom is then defined by 

&r’ E Ti _ T. K ei@-P) (9) 

with the angular frequency w and the phase shift ‘p 
between the temperature of extemal and intemal 
degrees of freedom. The temperature response of 
the intemal degrees of freedom can be expressed by 

which is an extension of Eq. (3). For the periodic 
temperature variation defined in Eq. (8), we get for the 
stationary state 

(11) 

The effective frequency-dependent heat capacity CG 
at constant volume is then defined by 

dE = C;STe = C,,,ST” + @Ti 

(124 

with 

c 
CG(w) = C”,, +L 

1 +jwr 
and C; = CV,,- CV,,. 

(12b) 
In case the intemal degrees of freedom are in 

equilibrium with the extemal ones, i.e. for low fre- 
quencies of temperature variation (w + 0), the static 
heat capacity C,,c can be subdivided into two parts: 
one belonging to the extemal degrees of freedom (q) 
and the other to the intemal degrees of freedom (C!!). 
In this situation, the effective frequency-dependent 
heat capacity of the sample C:(w) becomes identical 
to the static heat capacity CV,0 = CV(w = 0) = 
Cz + C;. In case the temperature changes are 
much faster compared to the characteristic relaxation 
time r, only the extemal degrees of freedom can 
contribute to the effective heat capacity 
CC(w + Co) = c,,, = Ct. The ‘relaxation strength’ 
in Eq. (12b) is then identical with the contribution of 
the intemal degrees of freedom to the static heat 
capacity C: = CV,0 - CV,,. 

Eqs. (12a) and (12b) define a complex frequency- 
dependent heat capacity, with a real part C:, and an 
imaginary part Ct, respectively. 

C: f CL -jCt = C,,, + cv c;wr 
1 +w2KJ 1 +wV’ 

(13) 

The frequency dependence of C: and Ct is illu- 
strated in Fig. 2a for a single relaxation time r. In most 
systems, the situation is much more complicated and 
the single relaxation process has to be replaced by a 
distribution of relaxation times. 

In contrast to the ultrasonic measurements in liquids 
[20], where the relative changes in volume are con- 
sidered to be smal1 during the relaxation, in calori- 
metric experiments the pressure is usually kept 
constant. In this case, the energy in Eqs. (12a),(12b) 
and (13) has to be replaced by the enthalpy and al1 
indices in the heat capacity which do refer to a 
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Fig. 2. (a) - Frequency dependence of the real and imagina.ry parts 
of the complex heat capacity. CV,O and CV,, are the limiting values 
of the heat capacity at low (static) and high freqencies, respectively. 
(b) - Heat capacity C,(t) as a function of time after an 
instantaneous temperature rise by AT at t = 0. 

constant volume ‘v’ have to replaced by ‘p’ for 
constant pressure. One wil1 notice tbat for many 
relaxation processes in condensed matter, i.e. when 
the changes in the intemal degrees of freedom are not 
coupled with changes in volume, SH’ can be replaced 
by SE’ even in case of constant-pressure experiments 
Wl. 

2.4. Real and imaginary part of the frequency- 
dependent heat capacity 

Since the complex heat capacity is a generalised 
compliance in the theory of linear response, the real 
and imaginary parts are connected by the Kramers- 
Kronig relations: 

and 

+x> se{C*(OJ 
3m{Ci(w)) = :P / I _’ dl, (14b) 

W 

where P denotes the Cauchy principal value. In con- 
trast to the dielectric or mechanica1 loss, the imaginary 
part of the heat capacity is not connected to an 
effective energy dissipation, and can be related via 
classica1 thermodynamics to the entropy change as 
follows: 

SS = 7r3m(Ci(w)) F (15) 

From the second law of thermodynamics [34], it 
follows that 3mC;(w)) 2 0. However, a forma1 
similarity to the loss component of mechanica1 or 
dielectric compliance can be found, considering the 
energy loss of the extemal degrees of freedom 
due to the phase shift between SF and S?. In the 
temperature-modulation experiment, the energy of 
the extemal degrees of freedom leaks into the 
intemal degrees of freedom, i.e. from one ‘form of 
energy’ to the other ‘form of energy’. This seems 
quite similar to the energy loss of an extemal 
mechanica1 or electrical field, which is transferred 
into heat of the sample. In both cases, it has to be 
proved whether the limitations for linear systems are 
fulfilled (or, at least, can be approximated in the 
experiment) or not. 

2.5. Principle of superposition 

As shown in Fig. 1, the intemal degrees of freedom 
respond to an instantaneous temperature rise AT by a 
time-dependent temperature change, which is an 
exponential function in the simplest case (see 
Eq. (5)). With AH(t) = Cp(t one can formally 
define [31] a time-dependent heat capacity CP(t) for 
the temperature step excitation. For example, a sche- 
matic representation of C,(t) as a function of time after 
an instantaneous temperature rise ATat t = 0 is shown 
in Fig. 2b. 

Based on the assumption of linear superposition of 
the enthalpy response (for an illustration, see Fig. 3) 
after a series of temperature steps AT,(t,) one can 
write, using a time-dependent heat capacity C,(t), 
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Fig. 3. Schematic representation of (b) - the temperature response 
of the intemal degrees of freedom after a series of (a) - extemal 
temperature steps AT, at times tk The extemal temperature is kept 
constant in the intervals between tk and Ik+,. Only two temperature 
steps at t, and t2 are shown. 

AH(t)=~AH,(t-tk)=xCp(t-QAT&). 
k k 

(16) 
If we go to the integral representation [31], with a 

normalised response function Q(t), we get 

AH(t) -_ Cwc + (CP,0 - Cwo) 
-cx 

x [l-@(t-t’)] 
1 

A~(t’)dt’=C,,,AT(t) 

-T{ (C,,o-C,.,)Q>(~)}AT(t-~)d~, 
0 

(17) 

with (= t - t’ and the ‘relaxation strength’ 
AC, = C,,o - Cr,, which may be considered as the 

phonon contribution in the case of condensed matter 
or the contribution from translational degrees of free- 
dom for a polyatomic gas. The response in the 
enthalpy change after a temperature step AT at 
t = 0 is then given by: 

fort<0 
{~,,,+(C,,O-C,,,)[l-~(t)]}AT fort>0 

(18) 
It can be seen that the term in the curly brackets 

in Eq. (18) is the time-dependent heat capacity 
Cr(r). 

For a harmonie excitation AT cc ST” cx eiW’, hence 
one gets from Fourier transformation in the frequency 
domain the following: 

AH(w) = Cp(w or 

6H(w) = C;(W)ST~(W), (19) 

C;(u) = Cp,oo - 

For the assumption 

(cC,,0 - CP.,) T,-@t),ei;ldi. 

0 

(20) 

that the normalised response 
function Q(t) is a single exponential decay, Eq. (20) 
has the same structure as Eqs. (12a) and (12b). For 
more complex relaxation processes Q(t) can be 
expressed by a superposition of exponential functions 
or a Kohlrausch law [32] Q(t) = exp(-(t/T)‘) (with 
0 < p I 1). 

with 

The structure of Eq. (20) is identical to the equa- 
tions in the more generalised description of the linear 
response theory. In this approach, the frequency- 
dependent heat capacity can be considered as general- 
ised susceptibility. Therefore, it is reasonable to com- 
pare the susceptibilities for different external 
excitations. This has been done recently by Hensel 
et al. for temperature-dependent TMDSC and dielec- 
tric relaxation measurement on poly(viny1 acetate) in 
the glass-transition region [8]. In Fig. 4 the tempera- 
ture dependence of the real (CL) and the imaginary part 
(CP) of the complex specific heat capacity 
(f = O.O4Hz, q = -l.l2K/min) is shown together 
with that of the real (E’) and imaginary part (E”) of 
the dielectric function (f = IkHz, q = O.SK/min). 
The total cr, which is almost identical to cP,o and 
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Fig. 4. (a) Temerature dependence of the real (CL) and imaginary part (CP) of the complex specifìc heat capacity for poly (vinyl acetate) in the 
glass transition region (f=O.O4 Hz, q=-1.12 Wmin) [SI. tan6 = ci/cL is the loss tangent. The total cp “can be identified by c,,~ in the text. (b) 
temperature dependence of the real (8) and imaginary part (8’) of the dielectric function in the glass transition region of poly(viny1 acetate) 
(f=lk Hz, q=OSWmin)[8]. The loss tangent is tan 6 = E”/E’. 

the loss tangents tanS = cP/cP and tanci = E”/E’ for perature and B and ~-0 parameters) for the relaxation 
the TMDSC and dielectric experiment, respectively, times from dielectric experiments to the frequency 
are also presented. range of TMDSC, that there is, at least in principle, an 

Hensel et al. have shown (see Fig. 5) by extrapola- agreement in the temperature dependence of ‘;le 
tion of the Vogel-Fulcher equation 1331 relaxation times of the two methods for the dynalnic 
(7 = TOexp[B/(T - To)], where T. is the Vogel tem- glass transition [35-373. 
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Fig. 5. Activation plot for poly(viny1 acetate) from reference [8]. 
The temperatures are taken from the maximum in c:(O), the glass 
transition temperature from standard DSC (+) (the transformation 
of the cooling rate into a frequency is described in [8]), and the 
maximum in the imaginary part (E”) of the dielectric function (x). 
The inset shows the frequency range of dielectric experiments. The 
lines represent a fit with Vogel-Fulcher equation (for the 
parameters, see [SI). 

2.6. Enthalpy jìfuctuations and heat capacity 

From statistical thermodynamics [34], it is known 
that the static heat capacity can be related to the 
fluctuations of entropy at equilibrium, which are 
identical to the fluctuations of enthalpy at constant 
pressure 

CP>0 = kg2 
Jl ((aq2). (21) 

with the volume V the Boltzmann constant kn and 
M(t) = H(t) - (ff). The brackets indicate the ther- 
modynamic average, where (H) is the average of H(t). 

Using the fluctuation-dissipation theorem, a static 
susceptibility can be related to a time-dependent 
correlation function, which can be extended to the 
dynamic susceptibility. In the fluctuation picture, the 
response of a system to an external perturbation is 
considered to have the same dynamics as the decay of 
spontaneous fluctuations. The normalised response 
function in Eqs. (17),( 18) and (20) can then be related 
to the auto-correlation function of enthalpy 

(22) 

For the complex frequency-dependent 
city, it follows: 

heat capa- 

lx 

-g (6H(t)6H(O))] eiwrdt. (23) 

0 

3. Propagation of ultrasound and frequency- 
dependent heat capacity 

3.1. Sound veloci9 and attenuation 

In a classica1 fluid, a propagating sound wave is 
attenuated by the mechanism of viscous damping Cr,i, 
and heat conduction QC,,,+ The classica1 absorption 
coefficient írClass (lengthh’) behaves like aciass Of’ 
(Kirchhoff-Stokes law, see, e.g. [38]), where f is the 
frequency. aClass [20] can be expressed by 

(24) 

where u is the velocity of sound, p the density, rlV and 
77, the bulk and shear viscosities, c, and cp the specific 
heat capacities (per gram) at constant volume and 
pressure, respectively, and A the coefficient of heat 
conductivity. The first term in Eq. (24) refers to 
viscous damping Q,is and the second term to damping 
by heat conduction oC,,,,& where in liquids the heat 
conductivity term is smal1 and, hence, usually 
neglected. Since o,iass 0: f2, the ultrasonic data are 
often plotted as a/f2 vs.J In this representation, aclass 
is a straight line and relaxation processes can be wel1 
identified. 

In more complex systems, e.g. polymers or systems 
with different phases, other processes can contribute 
to the observed ultrasound attenuation. Usually, the 
approximation is made that the contributions from 
relaxation urei, classica1 viscosity Qvis, heat conduc- 
tivity c&nd, and sound scattering for inhomogeneous 
systems cr,, add up to the attenuation of sound. The 
sound-scattering contribution can be neglected for 
the glass-forming liquids and the binary mixtures 
considered in the following. To compare with tem- 
perature-modulated calorimetry, we wil1 concentrate 
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on the relaxation contribution to the ultrasonic 
absorption. 

The relaxation contribution due to the isotropic 
dilatation of the sample by the longitudinal ultrasonic 
waves can be formally introduced into the hydro- 
dynamic equations by a frequency-, temperature- 
and pressure-dependent ‘bulk viscosity’ Q:(W). How- 
ever, the shear viscosity also has a frequency depen- 
dence for fluids with molecular relaxation processes. 
The shear relaxation is typical for viscoelastic systems 
(e.g. polymers, see [39] and references therein) and 
wil1 not be discussed here in detail. 

The relaxation processes, which can be formally 
described by a ‘bulk viscosity’, originate either from 
temperature changes, volume changes or both. 

Absorption processes due to the lagged energy 
exchange between external and internal degrees 
of freedom (‘Kneser’ relaxations [20]) can be dis- 
cussed in terms of a frequency-dependent heat 
capacity. Since the intemal degrees of freedom are 
almost insensitive to changes of volume, the transi- 
tions between the different intemal stages are mainly 
effected by temperature changes. In contrast, the 
so-called structural relaxation is assumed to be 
only originating from volume changes (with 
AH ” 0 or AC, g 0). In general, structural transition 
can be induced by both volume and temperature 
changes. 

Typical thermal relaxation processes (AV 2 0) are 
the energy exchange between translation and vibra- 
tional degrees of freedom, the changes between rota- 
tional isometrie forms or those due to chemical 
relaxations without changes in volume, which can 
be expressed by a complex heat capacity. The lagged 
response of the order-parameter fluctuation to the 
temperature and pressure changes in the sound wave 
near a critical point, which also belongs to this class, 
wil1 be discussed in more detail. For the relaxation 
related to the dynamic glass transition, a complex 
coupling between structural and thermal relaxation 
has to be considered. 

From the wave equation for the acoustic pressure 
propagating in a medium with loss, a complex sound 
velocity u*(w) can be defined by 

1 1 ff(w) _=_- _2[l_j?$], 
u*(w) -u(W) J w 

(25) 

where u is the phase velocity and cr the ultrasonic 
absorption coefficient. In several cases, the absorption 
per wavelength LYX = CG! is used. 

Assuming a system where the equation of state only 
depends on the temperature of the extemal degrees of 
freedom Te only, and having a slow energy exchange 
between extemal and intemal degrees expressed by a 
characteristic relaxation time 7, one gets 

(~_~)*A!(c”,_+&) 

(Cp,m +&---‘. (26) 

The terms in the brackets on the right-hand side are 
the effective frequency-dependent heat capacity at 
constant volume C: and at constant pressure CP 
(see, e.g. Eq. (12a)). As shown in Eqs. (20) and 
(23), both can be expressed in a more genera1 form 
for complex relaxation behaviour. Assuming that the 
enthalpy change of the intemal degrees of freedom is 
independent of pressure for a constant temperature 
[20], C: and CL can be replaced by C’. 

Separating real and imaginary parts and assuming 
that vc 5 v and a(v/w) < 1 in Eq. (26), the ultrasonic 
velocity and absorption can be approximated [20] by 
the following 

uo 2 ( > = 1 _ (Cr - C”)C’ w27’2 - 
u Cv(C* - Ci) . 1 + w2r’2 (27) 

o’X uo 
( > 

2= ~ (Cr - C”)C WT 
(28) 

IA C”(CP - 0) 1 + wY 

where 7’ = [(Cr - Ci)/CP]r and a’ is the nonclassi- 
cal absorption. With p = ~0 and r = r’, one can show 
that the attenuation per wavelength (YX is proportional 
to the imaginary part of the complex heat capacity: 

QX c( 3m{ C;(u)}. (29) 

For a relaxation process, the quantity cr~ = aX 
shows a loss maximum vs. frequency, which is similar 
to the imaginary part of the dielectric function for a 
dipole relaxation. This is schematically represented 
for a single relaxation process in Fig. 6. 

In the following example, we wil1 show that even 
for the structural relaxation connected to the glass 
transition where the longitudinal sound wave couples 
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logw 

Fig. 6. Schematic representation of the loss maximum of the 
attenutation per wavelength (YA as a function of frequency w. The 
characteristic relaxation frequency is indicated by an arrow. 

200 250 300 350 
T(K) 

Fig. 7. Temperature dependence of the ultrasonic velocity v and 
the attenuation (Y for poly(phenylmethy1 siloxane) in the glass- 
transition region (f = 1MHz) [40]. 

via temperature and pressure variations as wel1 as by 
shear deformation with the molecular rearrangements, 
the similarity between ultrasonic studies and modu- 
lated calorimetry is present. In Fig. 7, the temperature 
dependence of the ultrasonic velocity u and attenua- 
tion u: for poly(pheny1 methyl siloxane) in the glass- 
transition region (f = lMHz, MW = 4100g/mol) 
[40] is plotted. The sound absorption shows the typical 
loss maximum and the sound velocity decreases with 
temperature in the glass-transition region. The curves 
are very similar to those found for ci from TMDSC in 
PVAc (Fig. 5). Although the main characteristics of 
the ultrasonic attenuation resemble those of the ima- 
ginary part of the heat capacity, the temperature 

dependences of u and Q do not originate from CG 
alone. It is known that, in the glass-transition region, 
the contributions from shear excitation and volume 
relaxation have to be taken into consideration for 
longitudinal sound propagation. However, the differ- 
ent relaxation mechanisms seem to be strongly 
coupled in the glass-transition region, thus leading 
to the similar shapes of the temperature or frequency 
dependences. Parallel longitudinal and shear-wave 
ultrasonic investigations, together with specific-heat 
spectroscopy in the same temperature and frequency 
ranges, should be helpful for a better understanding of 
coupling of different modes in the glass-transition 
region. 

3.2. Complex heat capacity and sound parameters 
near a second-order phase transition 

The ultrasonic behavior of critical fluids attracted 
considerable attention, both experimentally and the- 
oretically ([23-291, and [4148]). The experimental 
data are explained by the coupling of the sound wave 
with a critical-order parameter fluctuations. In binary 
mixtures, the following mechanism of ultrasound 
attenuation is widely accepted: moreover, because 
of adiabatic compression and expansion of the fluid 
in the sound wave, the local temperature and the 
pressure-dependent critical temperature wil1 change. 
Due to the lagged response of the concentration 
fluctuations to this perturbations, energy is dissipated. 

The time scale of the decay of critical-concentration 
fluctuations is characterized by a frequency 
w, = l/rc = 2D/t2, where E = <HOE-’ is the correla- 
tion length of the critical-concentration fluctuations 
(E = (7’ - rc)/Tc - h t e reduced temperature; EO - the 
critical amplitude; and V - the critical exponent) and 
D = Dg&-“* is the mutual diffusion coefficient (v* - 
the critical exponent and DO -the critical amplitude). 
The critical dynamics of binary mixtures is then 
characterized by w, = WOE@, where wo is the critical 
amplitude and jfi the critical exponent 
(Z = 3 + Zq; and X, the critical exponent of the shear 
viscosity). 

Experimental values of WO for low molecular com- 
ponents and for polymers are found in the interval 
(1-50) GHz [42]. 

At low sound frequenties (~7~ « l), the fluctua- 
tions are in equilibrium with the extemal pressure and 
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Fig. 8. Schematic representation of the critical slowing down of 
the ultrasonic relaxation due to critical-composition fluctuations in 
a binary mixture. (oX), is the critical sound attenuation as a 
function of frequency for different values of (T-T,)/T,. The curves 
are calculated using the Ferrell-Bhattacharjee theory and the 
parameters with an aniline/cyclohexane mixture of critical 
composition [28] (left curve - T - T, = O.OSK, right curve - 
T - Tc = 30K, Tc = 29.72”C). The dashed line represents the 
frequency dependence of (oX), at the critical point T = T,. 

temperature changes, whereas for wrc » 1 the fluc- 
tuations cannot follow these changes. When w equals 
1 /T,, the density or composition fluctuations exhibit a 
maximum phase shift of the pressure and temperature 
oscillations. This results in a maximum in the energy 
dissipation, which is expressed as a maximum in (YA 
(see eg. Fig. 6). The frequency dependence of cyx for 
different values of E = (T - T,) /7’, is shown in Fig. 8. 
The ‘critical slowing down’ of the characteristic 
relaxation time r,(c) when approaching the critical 
temperature (E = IT - T, I/Tc + 0), is reflected by the 
different curves. The curves are calculated using the 
Ferrell-Bhattacharjee theory (see below) with the 
parameters for a critical aniline<yclohexane mixture 
Lw. 

Theoretical studies of critical ultrasound behavior 
are based on calculations of the frequency-dependent 
complex bulk viscosity [46-48] or the frequency- 
dependent complex specific heat [23-251; only the 
latter are considered here. Fixman [23] and Mistura 
[24] applied the Herzfeld-Rite idea of a frequency- 
dependent heat capacity to second-order phase transi- 
tions. In this theory, the internal modes are expressed 
by a distribution of relaxation times for the order 
parameter. This gives rise to the frequency-dependent 

heat capacity. The short relaxations times, typical for 
simple liquids, are shifted into the experimentally 
accessible frequency range by the ‘critical slowing 
down’. 

In 1985, Ferrell and Bhattachajee [25] extended the 
Herzfeld-Rite-Fixman-Mistura approach by adding 
the idea of ‘dynamica1 staling’. It was shown by 
several ultrasonic investigations near a critical point, 
that this theory is rather successful for a description of 
ultrasonic attenuation data (see, e.g. [26-291 and 
references therein). This theory was found to be 
especially successful for describing the experimental 
data in the high-frequency limit (see, e.g. [29]), where 
a renormalisation group approach of Krol1 and 
Ruhland [48] gives similar results. In the following, 
we wil1 concentrate on the dynamic staling theory 
[25]. In the Ferrell-Bhattacharjee theory, the complex 
sound velocity is given by 

u*(w) =uc+ ‘FC 
27kp(w) 

u, is the velocity of sound at the critical temperature Tc 
which, in turn, depends on the frequency. The dimen- 
sionless coupling constant g is defined by 

g = -Np 
[ (g)s+g (31) 

where (dT/dp), represents the adiabatic change 
of temperature after a change in pressure, and 
aTc/@ the shift of the critical temperature with 
pressure.The ultrasonic attenuation per wavelength 
is then given by 

cq = 7r 
442g2 

W;;(w)1 
2 Sn [cpcw>] (32) 

The complex specific heat c;(w) can be divided into 
a critical cc,,(w) and a non-critical background cp,b 
contribution: 

c;(w) = c;,&) + Cp,b. (33) 

For c;,,(w) » c:,~, the approximation 1 c;,~ (w) 1 = 
$,(w) can be used. Considering the critical contribu- 
tton of the complex specific heat near a critical point 
cJ c(w, E) G CP c(w, w,), one can discuss two regimes: 
(1) the thermodynamic (w=O) and (ii) the critical point 
function (T = Tc) [25]. 
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Fig. 9. Static specifïc heat capacity cr of a succinonitrile/water 
mixture with critical compostion vs. T - TC, from reference [49]. 
The curve represents a fit using ca = CP&-’ + cp,b universal critical 
exponent á = 0.11 (theory); system specific critical amplitude 
constant co = (0.562 f 0.019)JggIK-‘; constant cr,b = (2.2560f 
O.O34)Jg-kt; and critical temperature TC = 329.23 K) [49]. 

For the thermodynamic limit (w=O), the dynamic 
staling theory yields 

cp,c(O, WC) = cp 2 ( ) -g= $-iu 
P ’ (34) 

with the system-specific critical amplitude of the heat 
capacity CP and the universal critical exponent 
a! = 0.11 (Ising theory). An experimental example 
for the static specific heat capacity cp of a succinoni- 
trile/water mixture with critical composition as a 
function of the reduced temperature E is shown in 
Fig. 9. The data are taken from a recent publication by 
Knecht and Woermann [49]. The solid curves repre- 
sents a fit, using for the specific heat capacity 

c P = CP&-’ + cp,b> 

with a! = 0.11 (fixed). 
A similar functional form is expected for the tem- 

perature dependence of the ultrasonic attenuation at a 
fixed frequency (w > 0): 

o,j(w = const., E) c( -3m [ cp(w = const., E) 1 
The ultrasonic absorption o/f2 for an anili- 
ne/cyclohexane mixture with critical composition 
[28] in the one-phase (T > TC) and two-phase region 
(T < Tc) are shown in Fig. 10 for frequenties of 9 and 
15 MHz. In this investigation, the measurements were 

6W 

200 

I 1 I l I , I I I 
24 26 28 L 30 32 34 

oc 

Fig. 10. Temperature dependence of the ultrasonic absorption a/f’ 
for an aniline/cyclohexane mixture of critical composition [28] in 
the one-phase region (T > TC) and the two-phase region (T < TC) 
for frequenties of 9 MHz (fìlled circles) and 15 MHz (open 
circles). In the two-phase region the measurements have been 
performed in (1) - the cylcohexane-rich phase, and (2) - the 
aniline-rich phase. 

not only performed in the one-phase region but also in 
the coexisting cyclohexane-rich and aniline-rich 
phases. The critical contribution to the ultrasonic 
absorption for the two-phase region was proposed 
by Landau and Khalatnikov [21]. In contrast to the 
thermodynamic limit (w = 0) the ultrasonic attenua- 
tion and the corresponding imaginary part of the 
heat capacity for w > 0 do not diverge to infinity at 
T = Tc. 

At the critical point (T = Tc), one gets for the 
critical part of the frequency-dependent specific heat 
the following: 

$Jw,O) = cp -1w ( T” wo 
(35) 

The critical exponents from the Ising theory is 
CS/&? = 0.056 (6 = 0.63, Z = 3 + “q and X,=0.054). 
Real and imaginary paris of C& (w, 0) can be approxi- 
mated by 

&(w, 0) E ‘%e[cc,,(w, 0)] = CZ: (f$’ (36) 

and 

cp,,(w,O) = gm[cp,C(w,O)] = cig (z)-’ 

(37) 
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Both real and imaginary parts show the same type of 
frequency dependence c;,,(w) 0) CX c:,,(w) 0) cx w-5 
and diverge only at w = 0 

Direct investigations of the frequency-dependent 
specific heat c;(w) in the vicinity of the critical point 
would be very interesting to prove the theoretical 
predictions given below. However, due to the smal1 
exponent &/Zfi = 0.056, it may become very difficult 
to study the dynamica1 staling behaviour of the fre- 
quency-dependent heat capacity near a second-order 
critical point by TMC. Those isothermal experiments 
must cover several frequency decades and have to be 
performed very close to the critical temperature. 
Therefore, one needs to put in a special effort in order 
to keep the temperature constant and to minimise the 
amplitude of tbe temperature modulations. 

As expressed in Eq. (32), the frequency depen- 
dence of c:,,(w) for T = Tc resemble those for 
(oX), From dynamic staling arguments for the 
complex heat capacity, one gets for the ultrasonic 
attenuation per wavelength at the critical point [25] 
the following: 

a 
-z , 

(38) 

where ub is the non-critical contribution of the sound 
velocity. The frequency dependence of the critical 
absorption per wavelength and its critical slowing 
down is represented in Fig. 8 (see above). 

For the attenuation c~ylf~ at the critical point, 
Eq. (38) leads to a simple frequency dependence: 

@/fZ)r, = ~f-il+~iwl + B, (39) 

where B is a phenomenologically added background 
term, not further specified (Kirchhoff-Stokes law). In 
our case, B is identical to (cY/~~)~,~ at the critical point 
and K is a frequency-independent constant. The 
power-law behavior for (czX)r, is expressed by the 
dashed line in Fig. 8 with a power of 
-&/(ZV) = -0.056. 

In Fig. 11 the excess ultrasonic absorption 
(a/f2),i, = (o/f*) - (c~/f’)~ (o/f* - observed 
attenuation of the mixture; (a/f2)b -background 
absorption calculated from the data of the pure com- 
ponents [29]) for a binary polymer mixture of poly- 
ethylene glycol and polypropylene glycol in the 

0 2 4 6 8 10 12 

(f /Hz) -‘.057 (1 07) 

Fig. ll. (cu/~*)~. as a function of f-‘~057(01/f2)rmx = ((r/f*&, 
where a/f2 is the observed attenuation of the mixture at 
T = 28.9”C and (a/f2)b is the background contribution to the 
observed attenuation calculated from the pure components [29]. 

vicinity of the critical solution temperature 
(T - Tc = 0.1 K) is presented. Because CY/~” shows 
only a weak temperature dependence close to Tc (see 
Eq. (34) and Fig. S), it is appropriate to identify it as a 
measurement at the critical temperature. It can be 
seen, that the functional form of Eq. (39) is repre- 
sented by the experimental data. Similar results have 
been found before for several binary mixtures of low 
molecular-weight components (e.g. [27,28]). 

To describe the critical ultrasound behavior in the 
whole frequency and temperature range, Bhattachar- 
jee and Ferrell proposed a parameter-free relation for 
the reduced quantity QX/CXQ = Gar(Q), where QA is 
the contribution to the attenuation coefficient per 
wavelength from critical order parameter fluctuations 
at a given temperature and LYQ is the corresponding 
contribution at the critical temperature. The staling 
function GBF(@ only depends on the reduced fre- 
quency 0 = w/w,. Tanaka and Wada [26] have shown 
that the theories for critical ultrasonic absorption 
mentioned here can be brought to the following 
genera1 functional form: 

(Y~(w, &) = 27rA’(w, e)F(Q) = A(w, ~)F(fl). 

(40) 

They differ mainly in the functional form of the 
staling function F(R). A’ is an amplitude function 
which can be approximately expressed in al1 the 
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Fig. 12. Master plot of the reduced ultrasonic absorption per 

wayelength (oJ&.,t.n /A(T) (contribution from composition 
fluctuations) using the reduced frequency R = w/wC (criticl 
amplitude - wc = 31GHz; W, = WO&) for an aniline/cyclohexane 
mixture with critical composition [28]. The solid curves are 
calculated using the Kawasahi (K,AK), the Shiwa-Kawasaki 
(SK,AK) and the Ferrell-Bhattacharjee (BK,Aan) theory (see text). 

theories, except for [2.5], by: 

(41) 

In Fig. 12, the ratio (aii)~~~,~,/A(T) is plotted as a 
function of the reduced frequency fi = w/w, for an 
aniline/cyclochexane mixture with critical composi- 
tion [28]. For comparison the calculated curves from 
the Kawasaki (K, AK) [46], the Shiwa-Kawasaki 
(SK, AK) [47] and the Ferrell-Bhattacharjee theory 
(BF, ABF) [25] are plotted together with the experi- 
mental data. The explicit calculation of A would 
make it necessary to measure the heat capacity of the 
critical mixture in the vicinity of the critical point. 
Since no such data were available, the ultrasonic data 
are shifted together in order to obtain a master plot 
and A was used as a parameter to shift the theoretical 
curves to the experimental data. However, it appears 
that the experimental data are wel1 represented by the 
Bhattacharejee-Ferrell staling function. A similar 
result was recently found for a polymer mixture, 
where a more detailed comparison of the theories was 
carried out [29]. 

4. Concluding remarks 

It was the aim of this paper to show the similar 
origin of sound absorption due to thermal relaxation 
processes in longitudinal ultrasonic experiments and 
the frequency-dependent complex heat capacity mea- 

sured in temperature-modulated calorimetrie (TMC) 
experiments. 

The theories for the ultrasonic attenuation near a 
second-order critical point, which include the descrip- 
tion of the complex frequency-dependent heat capa- 
city, are referred to and illustrated with some 
examples. For experiments in the vicinity of a critical 
point, the ultrasonic spectroscopy can be considered as 
a high-frequency extension of the TMC. However, no 
such direct frequency-dependent heat capacity mea- 
surements are known until now. For a better under- 
standing of the dynamic glass transition, combined 
longitudinal and shear ultrasonic measurements 
together with TMC would also be of interest. 

From the foregoing considerations, especially from 
the requirements of the theories, the problems for a 
further development of TMC or TMDSC can be 
summarised as follows: 

(i) The amplitudes of the temperature variations 
need to be minimised (6T + 0) in order to fulfill the 
requirements of the linear response theory and to 
prevent irreversible changes in the samples or slow 
kinetic effects (e.g. crystallisation and melting in 
polymers). 

(ii) The signal-to-noise ratio must be considerably 
increased, especially for high accuracy isothermal 
frequency-depended heat capacity measurements. 

(iii) The frequency range of the method must be 
considerably extended, e.g. by a combination of dif- 
ferent techniques. 

However, it seems rather difficult to fulfill the 
requirements, especially for high-accuracy isothermal 
frequency-dependent heat capacity measurements 
over a broad frequency range by a simple modification 
of the existing DSC equipment. For those measure- 
ments a special design (e.g. a modified specific heat 
spectroscopy) seems to be necessary. 

Another important problem that has to be solved is 
the understanding of the frequency-dependent heat 
capacity in heterogeneous systems, where the heat 
conductivity between the components has to be taken 
into consideration. 
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